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We study the effects of random partnerships, introduced to interaction or replacement networks, on the
evolution of cooperation in spatial game theory on a square lattice. For the spatial prisoner dilemma game, we
show that, compared with the case without random partnership, cooperation can be enhanced regardless of
whether a random partnership is introduced to an interaction or replacement network. Specifically, the enhance-
ment of cooperation is strongest in the limit of zero randomness. We show explicitly that the cooperator
frequency is a decreasing function of randomness, and the cooperation eventually vanishes once the random-
ness is strong enough. For the spatial snow drift game, we find that the enhancement of cooperation occurs
only when a random partnership is introduced to an interaction network.

DOI: 10.1103/PhysRevE.79.011121 PACS number�s�: 02.50.Le, 87.23.Kg, 89.75.Fb

I. INTRODUCTION

Natural selection in Darwinian theory favors egoists who
try to maximize their individual benefits even at the expense
of the group. However, the evidence in biology and sociol-
ogy shows that cooperation among selfish individuals may
arise and be sustainable �1�. Resolving the social dilemma in
which a conflict arises between the benefits of individuals the
group is a challenging problem not only for biologists and
sociologists but also for physicists.

Since its introduction, the evolutionary prisoner’s di-
lemma �PD� �2–4� has been the basis of understanding coop-
erative behavior in populations of selfish individuals. In the
original one-shot two-player game, players can follow one of
two options: defection �D� and cooperation �C�. Each play-
er’s payoff depends on the choices of both players. For ex-
ample, two cooperators receive the reward R and two defec-
tors receive the punishment P, while the cooperator receives
the sucker’s payoff S at the same time his opponent exploits
the temptation T by choosing defection. The ranking of T
�R� P�S is required for the PD game. For the rational
players, mutual defection is the Nash equilibrium in the PD
game. In the iterated PD game, the assumption that the mu-
tual cooperation gains the highest total payoff imposes an-
other constraint 2R�T+S. When the population is infinite
and well-mixed, the mean-field description of the evolution-
ary PD game in which the density of cooperators follows

�̇c=�c�AC− Ā�, where AC refers to the payoff of a cooperator

and Ā the average population payoff, leads to the extinction
of cooperators.

In the last few years, several mechanisms favoring coop-
eration among selfish individuals have been proposed, such
as kin selection �5�, reciprocity �6�, reputation �7�, voluntary
participation �8�, and structured populations �9,10�. Among
these, the structured populations have drawn a lot of atten-
tion. In the spatial evolutionary PD game introduced by

Nowak and May �9�, individuals located on a lattice play
with their neighbors. At each round, players interact with
their neighbors by choosing cooperation or defection, and the
sum of the encounters from each neighbor gives the payoff
for a certain player. In the next move, each player follows the
most successful neighbor. Given this spatial evolutionary
game, Nowak and May have shown that cooperation can
emerge through the way that cooperators form clusters to
resist exploitation by defectors. The spatial evolutionary PD
game in Ref. �9� is a deterministic cellular automata and can
be transformed to a stochastic model in different means.
Szabo and his colleagues introduced noise to the strategy
adoption process �11,12�. They studied the effect of dynami-
cal randomness on the stationary concentration of coopera-
tors, and found the phase transition involving the extinction
of cooperators or defectors to be in the directed percolation
university class. Perc and his collaborators introduced noise
to the payoff matrix �13–15�. The reported results indicate a
stochastic resonance where the frequency of cooperators
reaches its maximum at an intermediate noise strength. The
noise can also be introduced to the structure of the underly-
ing lattice. Along these lines, the evolutionary PD game on
the small-world, regular random, scale-free networks, hierar-
chical lattice, and on the co-evolving networks has been ex-
plored extensively �16–24�. In particular, Santos and
Pacheco pointed out that the scale-free network can provide
a unifying framework for the enhancement of cooperation
�16�.

In this work, we consider another method to bring ran-
domness into the deterministic spatial game. The system un-
der investigation is the spatial PD game on a two-
dimensional �2D� lattice with periodic boundary conditions.
At each time step, players have a chance to randomly choose
partners. By using Monte Carlo simulations, we investigate
the influences of random partnership on cooperation and find
that randomness favors cooperation in a large range of pa-
rameters. Specifically, cooperation is greatly enhanced for
weak randomness. In the end, we also briefly report the ef-
fects of random partnership on the spatial snow drift �SD�*jzyang@bupt.edu.cn
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game on a 2D lattice where the SD game is constrained by
the ranking of T�R�S� P.

II. MODEL

As pointed out in Refs. �25,26�, there are two types of
networks determining the population structure in the spatial
PD game: the interaction network, in which each edge indi-
cates that the players on its ends can play the PD game with
each other, and the replacement network, which defines who-
is-the-role-model-of-whom in the evolutionary updating. In
this work, we consider two situations: the random partner-
ship is introduced to the interaction network �RPI�, or the
random partnership is introduced to the replacement network
�RPR�.

We consider a square lattice with periodic boundary con-
ditions where each player occupies a site. Without random
partnership, players perform the PD game with their nearest
neighbors on the lattice in each round. The total payoff of
each player in each round is the sum of gains from all inter-
actions in which he participates. Then each player adopts the
strategy of the neighbor with the highest payoff. In the case
of RPR, each player performs the PD game with his nearest
neighbors on the 2D lattice as normal. However, in the stage
of updating strategy, the player has a probability of p to
randomly choose one partner from the whole population and
adopts his previous strategy if he has a higher payoff. In the
case of RPI, the random partnership enters the interaction
network. That is, each player has a probability of p to play
the game with four neighbors randomly chosen from the
whole population. Then in the stage of updating strategy,
each player behaves as that on the 2D lattice.

Throughout this work, we set T=1.2, R=1, P=0, and S
=−0.5 unless specified. The dimension of the lattice is set to
be L=100.

III. RESULTS

We first consider the case of RPR. Simulations start with
an equal percentage of cooperators and defectors that are
randomly distributed among the population. The important
quantity to characterize cooperation is the cooperator fre-
quency �c. In the absence of random partnership �i.e., in a
deterministic spatial PD game�, the cooperator frequency
reaches an equilibrium value �c,d=0.15 after a transient. Now
we introduce random partnership to the replacement net-
work.

Generally, for any given initial condition, the system will
reach a statistical equilibrium, where the instantaneous coop-
erator frequency �c fluctuates around an equilibrium value,
after a transient that is much longer for extremely low p. We
calculate the equilibrium value ��c� by averaging �c over a
long time interval, for example �t=105, after the transient.
The dependence of ��c� with randomness p is plotted in Fig.
1�a�, which shows that ��c� monotonically decreases with p.
It is interesting to find that, comparing with the deterministic
case �p=0�, the cooperation could be enhanced by the intro-
duction of a random partnership �that is, ��c� is larger than
�c,d�. What is more, the enhancement of cooperation is sus-
tained in a large range of p, for example 0� p�0.73, and the
mean-field approximation of the evolutionary PD game is
recovered only when p is larger than a critical value �pc
�0.85�. It should be noted that the maximum of ��c� is ob-
tained in the limit of p→0, and the dependence of ��c� on p
is not continuous at p=0, which implies that the spatial evo-
lutionary game in its deterministic version is unstable to the
disturbance of random partnerships.

Now we consider the case of RPI. The equilibrium values
of the cooperator frequency, ��c�, are plotted in Fig. 1�b�.
Similar to the case of RPR, the enhancement of cooperation
induced by random partnerships is obvious, and the equilib-
rium value of ��c� is a monotonic function of p too. How-
ever, different from the case of RPR, there are two thresh-
olds: pc,1�0.26 and pc,2�0.4. When p� pc,1, all of the
defectors can be eliminated completely, that is, ��c�=1 in
contrast with ��c��0.8 in the limit of zero randomness in the
case of RPR. The mean-field approximation is recovered
above p� pc,2 which is much smaller than that in the case of
RPR. Between p� pc,1 and p� pc,2, ��c� decreases sharply.

Before we move forward, some remarks related to the
previous relevant works should be addressed. First, resonan-
celike behaviors in spatial game theory have been reported in
Refs. �13,29�. In particular, in Ref. �29�, the authors claimed
that the spatial PD game on a Watts-Strogatz small-world
network �30� can be considered as a noise-implemented
game in its original regular lattice, where they found signifi-
cant improvement of cooperation when an optimal amount of
shortcut probability is assumed. Though at any given time
the underlying networks in our work can also be regarded as
a Watts-Strogatz small world network, our work is different
from Ref. �29� for two reasons: �i� the structure of the under-
lying network in our work is not frozen, instead it varies with
time; �ii� though we are investigating the enhancement of
cooperation due to random partnerships, there are no reso-
nancelike behaviors to find. The highest extent of coopera-

FIG. 1. The equilibrium value of the coopera-
tor frequency, ��c�, is plotted against p for the
case of RPR in �a� and for the case of RPI in �b�.
The equilibrium cooperator frequency, ��c,d�
=0.15, in the absence of random partnership is
presented by a solid line in these plots. It is clear
from the two plots that ��c� is discontinuous at
p=0.
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tion is reached in the limit of zero randomness, and the in-
crease of randomness always weakens the cooperation
gradually. Second, in Refs. �25,26�, the authors pointed out
that it is always harder for cooperators to evolve whenever
the interaction network and the replacement network do not
coincide. However, there are some recent works claiming
that the strongest cooperation could happen when the two
networks are not the same �27,28�. In our work, the results
presented in Fig. 1 show that the coincidence between the
interaction and replacement networks is not necessary for
enhancing the cooperation and that, more interestingly for
the PD game, breaking the coincidence between these two
networks may pose a discontinuous transition on the coop-
eration, which indicates that the strongest cooperation occurs
in the limit of coincidence between the interaction and re-
placement networks.

Furthermore, we investigate how the spatial configura-
tions of cooperators and defectors on the 2D lattice evolve.
Starting with the deterministic version �p=0� and using its
steady state as an initial condition, we plot the snapshots at
successive times for different p in Fig. 2. For weak random-
ness, we find that, in both cases of RPR and RPI, the en-
hancement of cooperation is ascribed to the growth of the
clusters formed by the cooperators, and the growth of these
cooperator clusters is in the direction perpendicular to the
boundary of the clusters. The difference between the cases of
RPR and RPI lies in the fact that, when statistical equilib-
rium is reached, the defectors in the case of RPR form short
thin lines that always exist, though they vary with time. In
contrast, the defectors in the case of RPI are eliminated in the
end. For strong randomness �p=0.5 in the case of RPR and

p=0.37 in the case of RPI�, the enhancement of cooperation
is also assisted by the growth of the cooperator clusters in
both cases. However, different from the weak randomness
situation, the evolution here is accompanied by the violent
dynamics of the clusters, for example the generation or
elimination of the cooperator clusters, and the drift of these
clusters on the lattice.

These observations can be understood as follows. Basi-
cally, there are two time scales in the model we studied: �e,
which characterizes the evolution of the spatial game on the
2D lattice; and �r, which characterizes how frequently the
players are subjected to random partnership. �e is usually less
than tens of time steps, while �r depends on the randomness
parameter p. For extremely weak randomness �p�1�, �r is
much larger than �e and the occurrences of random partner-
ship become rare events that lead to the intermittency-like
behavior in the evolution of the system. That is, the system
first evolves fast to a steady state where the cooperators form
clusters to resist the exploitation of the defectors; then a ran-
dom partner is chosen by a player at a certain time step, and
such an event is likely to start another relaxation process. It
is noted that the occasional relaxation processes induced by
random partnership play important roles in the enhancement
of cooperation for weak randomness. To see it, we first con-
sider the case of RPR for extremely weak randomness. Sup-
pose that the system is in a steady state. Then once a random
partnership is experienced by a player, the player is likely to
replace its current strategy under any of three conditions: �i�
the player is in the domain of the defectors; �ii� the player
locates at the boundaries of the cooperator clusters; �iii� the
player lies inside a cooperator cluster if there exist isolated

FIG. 2. The snapshots of equi-
librium configurations of coopera-
tors �white� and defectors �black�
at different times. The time arrow
goes from left to right. �a� p
=10−4 in the case of RPR; �b� p
=0.5 in the case of RPR; �c� p
=10−4 in the case of RPI; �d� p
=0.36 in the case of RPI.
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defectors. Under the first condition, the player will shift his
strategy back to defection once he follows his random neigh-
bor inside a cooperator cluster, which means that such an
event does not really contribute to the cooperator frequency.
Under the second condition, both a cooperator becoming a
defector when the teacher defector locates at the boundaries
�C→D� and a defector becoming a cooperator when the
teacher cooperator is inside the cluster �D→C� can happen.
Considering the fact that the players inside the cooperator
clusters are most likely to have a higher payoff �3R� than the
defects unless the defects are isolated, the events of D→C
are dominant over those of C→D. Consequently, the coop-
erator frequency increases. When the cooperator frequency
becomes large enough, the domain of the defectors shrinks to
be in the form of a large amount of isolated defectors �see the
thin line shown in Fig. 2�a��, which will survive due to their
highest payoff, 4T. In the meantime, the events of C→D
under the third condition occur. The interaction between the
isolated defectors and the other cooperators has two effects:
one is favorable for the survival of defectors when the play-
ers inside the cooperator clusters follow the isolated defec-
tors due to the random partnership; the other is that the iso-
lated defectors may turn their nearest neighbors to defectors,
which will lower the defectors’ payoffs and is unfavorable
for the survival of defectors. The balance between these two
effects gives the equilibrium value of �c. Furthermore, it can
be found that two factors are responsible for the decreasing
tendency of �c with p: �i� increasing randomness will drive
more players inside the cooperator clusters to change their
strategies by following the isolated defects; �ii� increasing
the randomness decreases the time scale �r, which causes
random partnerships experienced by different players to be
possibly correlated. Such collectivity plays the role not only
of having the influence of the events under the first condition
on �c to be sustainable, but also making the events under the

second condition more frequent by thickening the boundaries
of the cooperator clusters. The thickened boundaries of the
cooperator clusters tend to have the events of C→D to be
dominant over those of C→D, while the events of players
changing strategies under the first condition are helpful for
cooperation. It is the competition among the events of play-
ers changing strategies under the three conditions that leads
to a gradually decreasing function of ��c� against the ran-
domness parameter p.

The above analysis can be applied to the case of RPI too.
However, it is crucial to note that, in this case, the events of
players changing their strategies happen only when these
players locate at the boundaries of the cooperator clusters. It
is also crucial to note that the isolated defectors cannot resist
the invasion of the cooperators since the isolated defectors
can only recruit their nearest neighbors, which is unfavorable
for the survival of defectors. These two factors, which are
different from the case of RPR, result in �c=1 for weak
randomness. For high randomness, the state of �c=0 arises
much earlier in the case of RPI than RPR due to the absence
of the events of players changing their strategies under the
first condition.

It should be noted that the greatly enhanced cooperation
in this work can only be observed for T�4R /3, since when
T�4R /3, only the isolated defectors can resist the invasion
of the cooperators due to the random partnership. However,
if T is increased beyond 4 /3R, not only the isolated defectors
but also the dimers consisting of two defectors could survive
since they have higher payoffs than those of players inside
the cooperator clusters, which leads to a sharp decrease of
��c� even for weak randomness. Similarly, for larger T, there
are more configurations for defectors to survive under the
influences of random partnership, which further decrease co-
operation among players.

Hauert and Doebeli pointed out �31� that the square lattice
actually inhibits the evolution of cooperation in the spatial

FIG. 3. �Color online� The equilibrium value
of the cooperator frequency, ��c�, is plotted
against p for the case of RPI in �a� and for the
case of RPR in �b�. The black �or red� line with
solid squares �or circles� is for the parameter sets
R=1 and r=0.2 �or R=1 and r=0.62�. The equi-
librium cooperator frequency ��c,d�=0.88 for R
=1 and r=0.2 are represented by a black line and
��c,d�=0.13 for R=1 and r=0.62 by a red line.
For the parameter set of R=1 and r=0.62, the
snapshots of equilibrium configurations of coop-
erators �white� and defectors �black� at steady
state, at p=0.3, are presented for RPI in �c� and
for RPR in �d�. To be clear, only one-quarter of
the space area is shown here.
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SD game for a wide range of parameter since, in the spatial
SD game, the cooperators form filamentlike clusters that
generate an advantage for defectors. Now, we turn our atten-
tion to the spatial SD game on a square lattice with random
partnership. The SD game can be reformulated as T=b, R
=b−c, S=b−c, and P=0 with two positive values of b and c.
According to the replicator dynamics �4�, the equilibrium
frequency of cooperators in the well-mixed SD game is 1
−r, where r=c / �2b−c� is the cost-to-benefit ratio of mutual
cooperation. We consider two parameter sets: �i� R=1 and
r=0.2, where ��c��0.88 in the deterministic spatial SD
game and ��c�=0.8 in the well-mixed SD game; �ii� R=1 and
r=0.62, where ��c��0.13 in the deterministic spatial SD
game and ��c�=0.38 in the well-mixed SD game. The results
are presented in Fig. 3. Different from the spatial PD game,
the enhancement of cooperation in the spatial SD game can
be found only when the random partnership is introduced to
the interaction network. The reason can be seen in the spatial
configurations of cooperators and defectors where the fila-
mentlike clusters are reserved in the case of RPR and the
compact clusters become prevalent in the case of RPI. From
the relationship between ��c� and p, we also find that the
well-mixed limit cannot be reached by simply setting p=1 in
the case of RPI or RPR as the spatial PD game does, which
indicates that the random partnership in the spatial SD game

could play more flexible roles in enhancing cooperation than
in the spatial PD game.

IV. CONCLUSIONS

In conclusion, we have investigated the spatial game
theory on a 2D lattice with random partnership. We investi-
gated two different cases: the random partnership introduced
to the interaction network or to the replacement network. For
the spatial PD game, we found that, in both cases, coopera-
tion could be enhanced by a random partnership and the
enhancement of cooperation is the strongest in the limit of
zero randomness. Furthermore, we found that the enhance-
ment of cooperation could be sustained in a large range of
randomness, and cooperation is eliminated only for suffi-
ciently large randomness. For the SD game, the enhancement
of cooperation is found only when the random partnership is
introduced to the interaction network.
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